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I Gradient Algorithms

for the Optimization of Dynamic Systems1’2

I:
L 

. 

by

II A. MIELE3

Abstract. Recent advances in the area of gradient me-

( thods for optimal control problems are reviewed. Single-

subarc problems are treated. Specifically, two classes of

1. optimal control problems, called Problem P1 and Problem P2 for

I easy identification, are solved.

Problem P1 consists of minimizing a functional I which

L depends on the n—vector state x(t), the rn-vector control u(t),
3.4

r and the p-vector parameter ir. The state is given at the

initial point. At the final point, the state and the parame-

I ter are required to satisfy q scalar relations. Along the

I 
.

I 
1This work is being contributed to the book Advances in Control
and Dynamic Systems: Theory and Applications, Vol. 16, Edited
by C.T. Leondes , Academic Press, New York , New York , 1979.

work was supported by the Office of Scientific Research ,
Office of Aerospace Research, United States Air Force, Grant H

L No. AF—AFOSR-76-3075, and by the National Science Foundation,
Grant No. ENG-79-18667.

3Professor of Astronautics and Mathematical Sciences , Rice
University, Houston, Texas.

I
I

~~~~~A_ T i I i~JI, _1 :::T’: iT;:: ~~~~~~~ ~~~~~.:~~~~~nTh ~~~~~~~~~~~~~~~~~~~~~



ii AAR—147
•1

~1
interval of integration , the state, the control , and the

~~p~~~Q~eter are required to satisfy n scalar differential equa—

tion~~~~ Problem P2 differs from Problem P1 in that the state,

the control , and the parameter are required to satisfy k -.
additional scalar relation along the interval of integration.

Algorithms of the sequential gradient—restoration type are

given for both Problem P1 and Problem P2.’ -.

‘. Problem P2 enlarges the number and ‘variety of problems

of optimal control which can be treated by gradient—restoration

algorithms . .~~ Indeed , by suitable t ransformat ions, almost every 
-~~

known problem of optimal control can be brought into the scheme

of Problem P2. This statement applies, for instance , to the

following situations: (i) problems with control equality con-

straints , (ii) problems with state equality constraints , (iii)

problems with state-derivative equality constraints , (iv)

problems w i t h-á o n t r ol  inequal i ty  constraints, (v) problems with

state inequality constraints , and (vi) problems with state—

derivative inequality constraints. 
-

~~

;--‘ Eight numerical examples are presented to i l lustrate the
UI

performance of the algorithms associated with Problem P1 and

Problem P2. The numerical results show the feasibility as

well as the convergence characterisitics of these algorithms.
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[ a  Key Words. Numerical analysis, numerical methods,

computing methods , calculus of variations, optimal control,
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gradient algorithms, sequential gradient—restoration

I algori thms , nondifferential constraints, bounded control,

bounded state, bounded time-derivative of the state.
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1. Introduction

In every branch of science , engineering , and economics ,

there exist systems which are controllable , that is, they can

be made to behave in different ways depending on the will of

the operator. Every time the operator of a system exerts an

option , a choice in the distribution of the quantities control-

lAng the system, he produces a change in the distribution of

the states occupied by the system and , hence , a change in the

final state. Therefore , it is natural to pose the following

question : Among all the admissible options, what is the par-

ticular option which renders the system optimum? As an example,

what is the option which minimizes the difference between the -

final value and the initial value of an arbitrarily specified

function of the state of the system? The body of knowledge

- 

I - 

covering problems of this type is called calculus of variations

or optimal control theory. As stated before, applications

occur in every field of science, engineering, and economics.

It must be noted that only a minority of current problems

• 
can be solved by purely analytical methods. Hence, it is

important to develop numerical techniques enabling one to solve

U optimal control problems on a digital computer. These nuzneri- -

cal techniques can be classified into two groups: first-order

~~~
. methods and second-order methods. First-order methods (or

gradient methods) are those techniques which employ at most

iL 
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the first derivatives of the functions under consideration.

Second—order methods (or quasilinearization methods) are those

techniques which employ at most the second d e r i v a t i v e s  of the

f u n c t i o n s  under considerat ion.

Both gradient  methods and quasilinearization methods re-

quire the solution of a linear , two-point or multi-point

boundary-value problem at every i t e ra t ion. This  be i n g the

case , progress in the area of numerical methods for differen-

tial equations is essential to the efficient solu tion of

optimal control problems on a di gital computer.

In this paper , we review recent advances in the area of . .  v

• g radient  me thods for  optima l control  problems . Because of

space limitations , we make no attempt to cover every possible

technique and every possible approach , a material impossibility

in view of the large number of publications available. Thus ,

except for noting the early work performed by Kelley (Refs. 1-2)

and Bryson (Refs. 3-6), we devote the body of the paper to a

review of the work performed in recent years by the Aero-

• Astronautics Group of Rice University (Refs. 7-34).

Also because of space limitations , we treat only sing le-

subarc problems. More specifically, we consider two classes

of optima l control prob lems , called Problem P1 and Problem P2

for easy identification.

Problem P1 consists of minimizing a functional I which 

- . .— -•-- - .•-~~ - - --~
-• .— -.-- - • -, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.14
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depends on the n—vector state x(t), the in—vector control

u ( t ) ,  and the p-vector parameter ii . The state is given at

the in i t i a l  point. At the final point, the state and

the parameter are required to satisfy q scalar relat ions.

Along the interval of integration , the state, the control ,

and the parameter are required to satisfy n scalar differ-

ent ia l  equations. Problem P2 d i f f e r s  from Problem P1 in

that the state ;the control , and the parameter are required to

satisfy k additional scalar relations along the interval of

integration . Algorithms of the sequential gradient-restoration

type are given for both Problem Pl and Problem P2.

1.1. Approach. The approach taken is a sequence of two-

phase cycles , composed of a gradient phase and a restoration

1. phase. The gradient phase involves one iteration and is de-

signed to decrease the value of the functional , while the con-

straints are satisfied to f i r s t  order.  The restoration phase

involves one or more i terations, and is designed to force

r constraint satisfaction to a predetermined accuracy, while the

norm squared of the variations of the control and the parameter

is minimized , subject to the linearized constraints.

The principal property of the algorithms presented here

L is that a sequence of feasible suboptimal solutions is produ—

ced. In other words, at the end of each gradient-restoration

t~. cycle , the constraints are satisfied to a predetermined accu—

[ racy. Therefore, the values of the functional I corresponding

[

- _ •

• ~~~~~~~~~~~~~~~~~~ ~~~~~~ -I-. ~~~~~~~~~~~~~~~~~ - —•~ .~~~~~~ ~~~~~�____
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to any two elements of the sequence are comparable.

The stepsize of the gradient phase is determined by a .1 L
one-dimensional  search on the augmented functional J, while

the stepsize of the restoration phase is obtained by a one- •

dimensional  search on the constraint error P. The gradient

stepsize and the restoration stepsize are chosen so that the

res to ra t ion  phase preserves the descent property of the gra-

client phase. As a consequence , the value of the functional I

at the end of any complete gradient—restoration cycle is

smaller than the value of the same functional at the beg i nn in q

of that cycle.

1.2. Time Normalization. A time normalization is used

in order to simplify the numerical computations. Specifically,

the actual time is replaced by the normalized time t = Oft ,

which is defined in such a way that t 0 at the initial point

and t= 1 at the final point. The actual final time T , if it  is

free , is regarded as a component of the vector parameter i~ to

be optimized . In this way , an optimal control problem with

variable final time is converted into an optimal control prob—

lem with fixed final time .

I •~— —. • —. -~__.- -—.~~ • ‘-~~~ —~~.-~ —~~- i—
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1.3. Notation. In this paper, vector—matrix notation is

used for conciseness.

Let t denote the independent variable, and let x(t), u(t),

• 11 denote the dependent variables. The time t is a scalar , the

state x(t) is an n-vector , the control u(t) is an in—vector,

and the parameter is a p-vector. All vectors are column

vectors.

Let h(x,u ,Tr ,t) denote a scalar function of the arguments

x,u ,ir ,t. The symbol h
~ 

denotes the n-vector function whose

components are the partial derivatives of the scalar function h with

respect to the components of the vector x. Analogous defini-

tions hold for h and h
U

Let w(x ,u,ir ,t) denote an r—vector function of the arguments

x ,u ,ii ,t..The symbol w
~ 

denotes the n x r  matrix function whose

elements are the partial derivatives of the components of

the vector function with respect to the components of the vector x.

Analogous definitions hold for the symbols 
~~ 

and

The dot sign denotes derivative with respect to the time,

that is , ~~ = dx/dt.  The symbol T denotes transposition of

vector or matrix. The subscript 0 denotes the initial point,

and the subscript 1 denotes the final point. 
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1.4. Outline. Section 2 contains the statements of

Problem P1 and Problem P2 .  Section 3 g ives a descr ipt ion of . 1
the sequential gradient—restoration algorithm . Section 4

discusses the determinations of the basic functions for the • -

gradient phase and the restoration phase. Section 5 considers

the determination of the stepsizes for the gradient phase

and the restoration phase. A summary of the sequential

gradient—restoration algorithm is presented in Section 6.

The experimental conditions are given in Section 7. The

numerical examples for Problem P1 are given in Section 8; and

the numerical examples for Problem P2 are given in Section 9. 
•

Finally, the discussion and the conclusions are presented in

Section 10.

• - • . 4 - ~~~~~’ 
- — ___________________ ________ ____________

—--I-— 
__________ — 

.—.---

~~~~~~~~~ 
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2. Statement of the Problems

Problem P1. This problem consists of minimizing the functional

• 
. - 1= f ( x , u , ir , t ) d t + [g(x , v , t ) ] 1, ( 1)

Jo

with respect to the state x ( t ) , the control u ( t ) , and the

parameter 7T which sa t i s fy  the d i f f e r e nt i a l  const ra ints

c— ~~(x,u,ir ,t) 0, 0 < t < 1 , (2)

the initial conditions

x(0)=given , (3)

and the final conditions

[~~(x,v ,t)]1 =O . (4)

In Eqs. (1)—(4), the quantities I,f ,g are scalar , the function

t~ is an n—vector, and the function ~ is a q—vector. Eqs. •

(2)—(4) constitute the feasibility equations for Problem P1.

I________
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Problem P2. This problem is an extension of Problem P1,

which arises because of the inclusion of the nondifferential

constraints

S(x,u ii ,t)=O , O < t < l , (5)

to be satisfied everywhere along the interval of integration.

Here, the function S is a k—vector , k<m . Eqs. (2)-(5) cons—

titute the feasibility equations of Problem P2.

Problem P2 enlarges dramatically the number and variety

of problems of optimal control which can be treated by

gradient-restoration algorithms. Indeed , by suitable trans-

formations ,almost every known problem of optimal control can 
- .

be brought into the scheme of Problem P2. This statement

• applies , for instance, to the following situations: (i)  prob—

lems with contro l equa lity constr aints , (i i)  problems with

state equality constraints, ( i ii)problems with state-derivative

equality constraints, (iv) problems with control inequality

constraints, (v) problems with state inequality constraints ,

and (vi) problems with state-derivative inequality constraints.

For an illustration of the scope and range of applicability

of Problem P2, the reader is referred to Ref. 19 and Refs.

25—29.

2.1. Remark. For both Problem P1 and Problem P2, the

number of final conditions q must satisfy the following relation: j

a... ,.~~~~
- -- - - 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 

-•- -~~~~~--• •-“ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . -
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q< n+p~~< n + p ,  (6)

where the symbol p~ denotes the number of components of

the parameter it present in the final conditions.

2.2. Remark. Problem P1 can be regarded as a particular

• case of Problem P2, which arises by deleting Eq. (5). This

being the case, the analytical derivations presented here

refer only to Problem P2 . The corres ponding analy tical deri-

vations for Problem P1 can be obtained by setting

(7)

S
~~
E0 , Sit~~

O (8)

in the equations of Problem P2. However , the dif ferentiation

between Problems P1 and P2 is invoked later on in the paper,

in the section dealing with the solution of the linear , two-

point boundary-value problem (LTP-BVP). This is necessary

for computational efficiency.

2.3. Augmented Functional. From calculus of variations,

it can be seen that Problem P2 is one of the Bolza type , which

can be recast as that of minimizing the augmented functional4

1]

[1

_ _  ••.—~~~~~~~~ • - -~~ •- - -~~~~~- - • • • . _
~~~~~~~~~~~~~~~

.•,- .
~~~~~~~~~~~~~~~~~~ -
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[f+A T(~~
_
~~) +p

TsJdt + (g~~~T~,)1
0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( 9 )

subject to (2)—(5). In Eq. (9), A(t) is a variable Lagrange

multiplier (an n—vector), p(t) is a variable Lagrange multi-

p1.~.er (a k-vector) , and ~.i is a constant Lagrange m u l t i plier

(a q—vector).

2.4. First—Order Conditions. Let the multipliers ~(t),

p ( t ) , ji be chosen consistently wi th

0 < t < l , (10)

(X+g +~p u ) 1 =O. (11)

Then , the optimal control u (t) and parameter ~ satisfy

the followin g relation s:

O < t < l , (12)

H 41n Eq. (9), it is tacitly assumed that the initial conditior~ 
•

(3)are satisfied . The second form of Eq. (9) arises after •

• 
the customary integration by parts is performed .

. !

~ 

H

.1.. •_ .  
-_ — -.~~-.__--—---
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fl

j Cf — q x + S p ) d t + (g~~+~~7 u)1 =O. (13)

0

• Eqs. (lO)—(l3)constitute the optimality conditions for Problem P2.

2.5. Two-Point Boundary~yalue Problem. The system

• (2)- (5) and (lO)—(l3)constitutes a nonlinear, two—point boundary-

value problem in which the unknowns are the funct ions  x ( t ) ,  L

u(t), it and the multipliers A(t) , p(t), u. Only for particular

cases , closed—form solutions are possible. In general , nume—

t .  rical methods must be employed .

Depending on whether these numerical methods employ at

most the first derivatives or at most the second derivatives

of the functions under consideration , two classes of algorithms

can be developed : first-order algorithms (also called

gradient methods) and second-order algorithms (also called

- quasilinearization methods). As stated in the introduction ,

only first—order algorithms are considered here.

1 2.6. Performance Indexes. When solving Problem P2 on a: digital computer , it is necessary to define conve rgence in a

I numerical sense. In this connection , let the norm squared of

a vector y be defined as

N(y)=yTy. (14)

I
I
I- -~ 

•

- -~~~~~~~~~~~~~~~~~~~~ — . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • .. •~~~~
_ •

~~ 
-•— —~~~~—~~~~-~~ ~~~~~~~~~ . • ~~~~~~~ _ - . . : 

~~~~~~~~~~~~~~~~~~~~~~~~~ •
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Let P and Q denote the scalar performance indexes 5

11 (1

~‘ I 
N( c—4 )dt + ~ N(s)dt+N(~p)1 , (15)

Jo Jo
fl

Q =j N(
~
\ _ f

x +
~~x A _ S xP)dt +~~~~

N(f u
_
~~~

A + S P ) d t

Ill 1
( f — ~~~,\ +S p)dt + ~~~~~~~~~~~~~~~~~~~~~~~~~~ (16)

LJ°  J

which measure the errors in the constraints  and the optimali ty

conditions, respectively. Observe that

P = O , Q 0 , (17)

for the optimal solution and that

P > 0 and/or Q> 0, (18)

for any approximation to the optimal solutiori. This being the case,

numerical  convergence can be def ined as follows : an i terative

algor i thm is stopped whenever funct ions  x ( t ) , u ( t ) , it and

multipliers A(t) , p(t), ~ are found such that

P 

~ 
C
1 ~ 

c2 , 
(19)

where and £2 
are small , preselected numbers.

51n Eq. (15), it is tacitly assumed that the initial conditions
(3) are satisfied .

• •
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3. Seq~ential Gradient-Restoration Algorithm

The techni que employed is charac terize d by a sequence of
.1 

two—phase cycles, composed of a gradient phase and a restor—

ation phase. The gradient phase is started only when Ineq.

(19-1) is satisfied; it involves one iteration and is designed

to decrease the value of the functional I or the augmented

functional J , while the constraints are satisfied to f i r s t

order. The restoration phase is started only when Ineq.

1: (19-1) is violated ; it involves one or more iterations, each

designed to decrease the constraint error P, while the norm

L. squared of the variations of the control u(t) and the parame-

ter it is minimized . The restoration phase is terminated

whenever the constraints are satisfied to a predetermined ac-
1~~

curacy , that is, whenever Ineq. (19-1) is satisfied .

- 
A complete gradient—restoration cycle is designed so that

the value of the functional  I decreases while the constraints

are satisfied to the accuracy (19-1) both at the beginning and

at the end of the cycle. Finally, the algorithm as a whole is

I. terminated whenever Ineqs. (19) are satisfied simultaneously .

3.1. Notation. For any iteration of the gradient phase

L or the res torat ion phase , the following terminology is adopted :

E x(t), u(t), it denote the nominal functions ; i~(t), ü(t), i~

denote the varied functions; and Ax(t) , Au (t), i~~it denote the

[ displacements leading from the nominal functions to the varied

I

_  

_  • 
I 

~~~~
. 

•

—•——I~•• - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .—~ • ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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functions. These quantities satisfy the relations

k(t) =x(t) +Ax (t), ü (t)=u(t)+L~u(t), ~~= n + M i . (20)

Let a be a positive number representing the stepsizu H
(either the gradient stepsize or the restoration stepsize).

Then , we define the displacements per unit of stepsize as

follows :

A(t) Ax(t)/a, B(t) = Au(t)/~ , C= A n/ ~~. (21)

Upon combining (20) and (21), we see that

~c(t) = x(t) + aA(t), ü(t) = u(t) + ctB(t), = n + ‘
~C . (22)

3.2. Desired Properties. The functions t~x(t), •\u(t),

Mi must be determined so as to produce some desirable effect

~ I at every iteration, namely, the decrease of the functionals I,

and/or J, and/or P. Thus, the following descent properties

are require d: 
•

i < I, and/or < J, and/or < p , ( 2 3 )

~~~~~~~~~~~~~~
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where I, J, P are associated with the nominal functions and I,

• I J, P are associated with the varied functions. In turn , the

functions A(t), B(t), C are chosen so that

óI < 0, and/or 5J< 0, and/or 5P < 0, (24)

where the symbol 5(...) denotes the first variation . Then, by

• L . choosing the stepsize a sufficiently small, the satisfaction

of relations (23) is guaranteed. Ineqs. (23—1), (23—2) and

(24-i), (24-2) characterize the gradient phase , while Ineqs.

1 (23-3) and (24—3) characterize the restoration phase.

3.3.  First Variations. Next, we give the expressions

for the f i r s t  variat ions of the functionals I , J , P; a f te r
I

r simple mani pulat ions , omitted for the sake of brevity, they
L. 6 7

take the form

rl

SI/a (f~A + f~B + f ~C)dt + (g~A + g~C)1, 
(25)

0

. 1
1 _ _ _ _ _ _ _ _ _ _ _

t 
6
lmplicit in Eqs. (25)—(27) is the assumption A(0) = 0.

The first variation of the augmented functional J is computed

I by varying the functions x(t), u(t), it , while holding the
multipliers X(t),p(t) , p unchanged .

•1
•
I

— • _ ~~~ _•_ ~__~ _~ __•__• .•~~
_ •~~

_• •~~••_~• ._aiIJ
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and

1 L
6J/a = + 

~x 
- 

~x
X + S~~~

T
~~t + j u~~u

A + S~ p)
TBdt

0 0

+ S~ p)dt +(g + + g +  
~X

U) A]i, (26)

and

(x- )T(A ~
TA _ ~

TB_ ~
TC)dt

+~~~s
T(sTA+ sTB+ sTc)dt+ [ (~

TA+~~
T
c)] (27)

For the purposesof this paper , Eqs. (25)-(27) must be completed

by the following relation:

Cl

~ B
TBdt+CTC (28)

Jo

which constitutes a measure of the overall change of the con-

trol and the parameter.

3.4. Remark. Clearly , every iteration of either the

gradient phase or the restoration phase includes two distinct

operations: (a) the determination of functions A(t), B(t), C

consistent with the first variation requirements (24); and

(b)  the determination of the stepsize c~ consistent wi th the

total variat ion requirements ( 2 3 ) .  •
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• - 4. Determination of the Basic Functions

There exist an infinite number of combinations of fun-

ctions A(t), B(t), C capable of satisfying the first-variation

1. inequalities (24), subject to the linearized constraints. In

order to arrive at a unique combination of functions , some

additional requirement must be imposed. This is done through

the formulation of the following auxiliary minimization prob-

lems.

Problem P3. For the gradient phase, minimize the linear

functional (25), with respect to the perturbations A(t), B(t),

I .  C which satisf y the linearized constraints

F
A — A — ~~~B— ~~~C =O , O < t < l , (29)

STA + STB + sTc = 0 , 0 < t < 1, (30)
1.. x U •Ti — —

A(0) = 0, (31)

t (~~~A + ~~~C) 1= O , (32)

[ and the quadratic isoperimetric constraint (28).

Note the absence of forcing terms from Eqs. (29)-(32).

[ This implies that the nominal functions characterizing the

I 
gradient phase satisfy the constraints (2)-(5) within the pre-

selected accuracy (19-i).

I Problem P4. For the restoration phase, minimize the

quadratic functional (28), with respect to the perturbations

I ACt), B(t), C which satisfy the linearized constraints

I
1

• • -_ • —~~~~~~~---——_~ •
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A -~~~A-~~~B- ~~C+ ~~~~~~~~~~~~~~~ 
=0 , O < t < l ,

• S~A + S
TB+S TC + S = 0 , 0 < t < l , (34)

A(0) 0, (35)

(
TA +  

Tc+ ~) 0 .  ( 3 6 )
x iT 1

Note that forcing terms are absent from Eq. (35), but are

• present in Eqs. (33), (34), (36). This implies that the nominal

functions characterizing the restoration phase satisfy the

initial conditions (3), but violate one or more of the

remaining constraints (2), (4), (5). Indeed , it is

the purpose of the restoration phase to correct these viola-

tions, while causing the least possible disturbance in the

system. This is the significance of the least—square criterion

(28).

4.1. First—Order Conditions. Problems P3 and P4 are

variational problems of the Bolza type, each governed by a

d i f f e r en t  set of opt imali ty conditions.

For Problem p3, let the multipliers ( t ) ,  ( t ),  ; be chosen

consistently with

O < t < l , (37)

(\+g ~~+~~~ii)1 =0. 
(38)

—.1—

— --
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Then, the control perturbation B(t) and parameter perturbation

C satisfy the following relations :

B + f
~~

_
~~~~A + S ~~

p = O , O < t < l , ( 3 9 )

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( 4 0 )

For Problem P4 , let the mul t ip l i e r s  ? (t ) ,  p (t ) ,  be chosen

consistently with

0 < t < l , (41)

• 
L 

~ + ~x~~ i 
= o. (42)

• Then , the control perturbation B(t) and parameter perturbation

C satisfy the following relations:

B—
~~~

X + S
~
p = 0, 0 < t < l , (43)

LI C+
~~~~

(_
~~

A+S
~
P)dt + 

~~~~~~~~~~~~~~~~~ 
( 4 4 )

4.2. Linear1 Two-Point Boundary-Value Problem. For the

I 
gradient phase, Problem P3 is governed by the feasibility

equations (29)—(32) and the optimality conditions (37)-(40).

L For the restoration phase , Problem P4 is governed by the

C
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feas ibi l i t y  equat ions ( i 1 ) — ( 3 6 )  and thi  optima l i t y  conditions

( 4 1 ) —  ( 4 4 )  . The form of those f easibi l i ty equa t ions and

op t i r n a l i t y  c o n d i t i o n s  i s  such t h a t  the sys tems  go v e r n i ng

Problems P 1 and P4 can be embedded i n  a s i ng l e  l i n ear  sys t em.

For eompactness , as well as to fd c i  i i  t a t e  }) l o ( ; r am m i n q ,  t_ hi

po in t  (>1 v i ew is t a k e n  here , and the  si r lqie  sys tem qoVern i  flq

both the  gr a d i e n t  phase and the r e s t  oi-at ion j lia~ e is wri tten

• as fo l  l ows :

A — I: ~ A 
— Il ~~ l1 — 1:1 i k ( x — 

~ 
) 0 , 0 - ( ‘ I , ( ‘~ ~ 

)
x u ii r — —

S
1
A s

1
l~ + k~~; • • 0, 0 t. 1 , (46)

A (0) = 0 , ( 4 7 )

(~~‘
1

A ~ + k~~~)1 
= 0, (48)

and

— k f 4 I I — S p = 0 , 0 t • I , 
(- 1  9)

( I X  X X —

( \ + k g  I 4~I j I  )~ = 0, (50)

B + k~~~ i — I 
~~~~~~~ 0, 0 t I , ( 5 1 )

C + (k — I 1) d t l (k t i ~ 0 .  ( 5 2 )

J O

3 ‘rho constants k and k r ippea r i nq in (4 5) — (
~ 2 )  t .ike t h e
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• fol lowing values:

gradient phase, kg = 1, k
r 

= 0;  ( 5 3 )

re sto r at ion phase , k = O , kr = l ~

For g ive n nominal  f unc t i ons  x ( t ) ,  u ( t ) ,  it and given constants

f kg and kr~ Eqs. ( 4 5 ) -~~52 )  d e f i n e  the funct ions  A ( t ) , B ( t ) ,  C

- 
and the m u l t i p l i e r s  \ ( t ) ,  ~~( t ) ,  ~i. As can be seen , we are in

the presence of a linear , two-point boundary—value problem

(LTP-BVp), which can be solved independently of the value

assigned to the stepsize a.

In principle , the LTP-BVP (45)—(52) can be discussed si-

multaneously for both Problem P1 and Problem P2. However , for

• computational efficiency, it is better to separate the discus-

sion of Problem P1 from tha t of Problem P2. This is because the

LTP-BVP for Problem P1 can be solved executing q + 1 independent

I sweeps of the differential system , while the LTP—RVP for Problem

P2 requires the execution of n + p + l  independent sweeps. Here,

C q is the number of f i na l  conditions , n is the dimension of the

state vector , and p is the dimension of the parameter vector.

_ __ _ _   

L

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •—~~~~~ ~~~~
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4 .3 .  LTP-BVP for Problem P1. We emp loy a backward-

forward integration scheme in combination with the method of

particular solutions (R e f .  7 ) .  The technique requires the

execution of q + 1 independent sweeps of the differential sys-

tem (45)—(52), each characterized by a different value of the

multiplier p . Note that Eq. (46) is deleted and that the simpli-

fications (7)-(8) are invoked in the remaining equations .

• The generic sweep is started by assigning particular

values to the components of p ; then , the multiplier •\(l) is

obtained from Eq.(50). Next, Eq. (49) is integrated backward to

obtain the function A(t) . With A C t) known , Eq. (51) is

employed to obtain B(t), and Eq. (52) is employed to compute

C. Then, A(t) is obtained by forward integration of (45),

subject to the initial condition (47). In this way, the

sweep is completed : for the arbitrary value assigned to ~i , i t

leads to the satisfaction of all of the equations of the

system (45)—(52), except Eq. (48).

In order to satisfy Eq. (48) and because the system

(45)-(52) is nonhomogeneous , q + l  independent sweeps must be

executed emp loying q + 1  d i f f e ren t  mul t i plier vectors

i = l , . . . , q + 1.  The f i r s t  q sweeps are performed by choosing

the vectors 
~l’~~”’~~q to be the columns of the ident i ty

matrix of order q. The last sweep is executed by choosing

~q+l to be the nul l  vector. As a result , one generates the

~ •
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• functions and multipliers

A
~
(t), B1(t) , C1, A

~~
(t), p~~, i = l  ,q+l. (55)

Now , we introduce the q + l  undetermined , scalar constants

• and form the linear combinations

• A(t) = Ek~ A . (t )  , B(t) Ek.B.(t) , C =  Ek ~~~~C~~~ , (56)

A (t) = 
~~~~ 

(t), p = 
~~~~~ 

(57)

where the summations are taken over the index i. The q + l  coef-

ficients k1 are obtained by forcing the linear combinations (56)

to satisfy Eq.(48), together with the normalization condition (Ref. 7)

• 
Ek~~= l .  (58)

Once the constants k. are known , the solution of the LTP-BVP

• (45)— (52) is given by (56)— (57).

4.4. LTP—BVP for Problem P2. We employ a forward in-

tegration scheme in combination with the method of particular

• 

- 
solutions (Ref. 7). The technique requires the execution of

L n + p + 1 independent sweeps of the differential system (45)-(52),

each characterized by a different value of the (n+p)-vector

• a, whose components are the n components of the initial multi-

• I plier X (O ) and the p components of the parameter C.

The generic sweep is started by assigning particular

L values to the components of a , that is, the components of the

C
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vectors A (0) and C. Note that A(0) is known , because of (47).

Then , A (t) and A (t),together with B(t) and p(t), are obtained

by forward integration of (45) and (49), subject to (46) and

(51). Note that, at each time station t, Eqs. (46) and (51)

constitute a system of m+k linear relations in which the un—

• knowns are the m + k  components of the vectors B ( t )  and p ( t ) .

For this system to have a unique solution , the following dis-

equation must hold :8

det {S
T
S ]  ~~O , 0 < t < l .  (59)

As a result of the procedure , the sweep is completed : for the

arbitrary value assigned to a, it leads to the satisfaction

of all of the equations of the system (45)-(52), except Eqs.

(48), (50), (52).

In order to satisfy Eqs. (48), (50), (52) and because the

system (45)-(52) is nonhomogeneous , n + p + l  independent sweeps

must be executed employing n + p + l  different vectors a.,

i = 1,... ,n + p + 1. The first n + p sweeps are performed by

8Disequation (59) is obtained from (46) and (51) after elim—
ination of B(t). The resulting linear equation in p(t)
admits a unique solution providing (-59) is satisfied .
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(1
choosing the vectors a1 l an +p to be the columns of the

identity matrix of order n+p. The last sweep is executed by

-
~~~ choosing o~~~ +1 to be the null vector. As a result, one

generates the functions and multipliers

A~ (t), B1(t), C~ , A 1(t) , P~~
(t), i=l ,n+p+l. (60)

Now, we introduce the n + p + 1  undetermined , scalar con-

stants k. and form the linear combinations
• 1

A(t) =Ek.A . (t), B(t) ~~Ek~B~~(t)~ C=~~k1C~~ (61)

.1 A ( t )  = Ek~ X~~(t)~ p(t) ~k~ P1(t) 1 (62)

where the summations are taken over the index i. The n + p + l

coefficients k1 and the q components of the multiplier p are

obtained by forcing the linear combinations (6l)-(62) to

satisfy Eqs. (48), (50), (52) together with the normalization

condition (Ref. 7)

~k~~=l. (63)

[ Once the constants are known, the solution of the LTP-BVP

( 4 5 ) — ( 5 2 )  is given by (61)— (62).

4.5. Computational Effort. Each sweep involves

integrating 2n differential equations, that is, the n linear-

L ized state equations (45) and the n multiplier equations (49).

• • • • 
• 

• • • _____
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Since q + 1 sweeps are involved in Problem P1 and n + p 4 1

sweeps are involved in Problem P2, the amount of computational

work performed per each iteration , gradient or restorative ,

is proportional to the factor:

Problem P1, w= 2n(q + 1); (64)

Problem P2 , W = 2 n ( n + p + l ) .  (65)

4.6. Remark. For both the gradient phase and the res-

toration phase, a linear , two-point boundary-value problem

must be solved. Once the constants k1 are known , the compo- •

site solution is obtained via (56)—(57) or (61)—(62). A

drawback of this procedure is that the q + 1 particular solu-

tions (55) or the n + p + l  particular solutions (60) must be

stored at N + l  time stations (here, N denotes the number of

integration subintervals, so that L\t=l/N is the magnitude of

the integration step). Hence, a storage problem arises if

the system under consideration is relatively large, while the •

computer memory is relatively limited.

This drawback can be offset as follows. Once the con-

stants k1 are known, the multiplier p or the vector

a=.{A T(0),CT]T of the composite solution is computed as

follows:

•
~~•—~~:~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~.••-
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Problem P1, p= [k1, k2, ...~~~ kq~~ ; (66)

C Problem P2, a= [k1,k2, ..., ~~~~~~~ (67)

Then , a supplementary sweep is executed according to the procedure

of Section 4.3 or Section 4.4. Clearly, the total number of sweeps

increases by one , and the computational work per iteration ,

[ gradient or restorative, becomes proportional to the factor:

I Problem P1, w= 2n(q+2); (68)

I Problem P2 , w= 2n(n+p-s-2). (69)

In conclusion, use of this supplementary sweep increases the
1. CPU time; nevertheless, depending on the severity of the

storage problem, this course of action might be desirable ,

and sometimes essential, with certain systems and certain

I computers.

4.7. Descent Properties. The functions A(t), B(t), C

L solving Eqs. (45)—(52) are such that the following first—

F variation properties hold:9

- gradient phase, 5I=~~J=-aQ ; (70)

restoration phase, 6P=- 2ctP. (71)

In Eq. (70), Q denotes the error in the optimality conditions

I 1 (16) at the beginning of the gradient phase. Because of

L 9’rhis can be seen by substitution of (45)-(52) into (25)-(27).

UI:
~~~~~~~~~~ —-
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(37)-(40), the error Q reduces to •

(~1

• ~ BTBdt+CTC . (72)
J o

In Eq. (71), P denotes the constraint error (15) at the

beginning of the restoration phase.

Note that the first variation properties (70) and (71)

are consistent with the requirements (24). This being the

case, it is possible in principle to determine the gradient

stepsize so that the descent property (23—1) or (23-2) is

enforced in the gradient phase. It is also possible to

determine the restoration stepsize so that the descent pro-

perty (23-3) is enforced in the restoration phase. For

• details, see the following section .

I

L~ • • •~~~~~~
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I I 1 ;
5. Determination of the Stepsizes

• 5.1. Gradient Stepsize. Suppose that the perturbations

A(t), B(t), C solving the LTP-BVP (45)-(52) for the gradient

~ C phase1° are known. Since the nominal functions x(t), u(t), it

are known, the one—parameter family of varied functions (22)

can be formed. After substitution of Eqs. (22) into Eqs. (1),

(9), (15), the following functions of the stepsize are

obtained :

— -• -• — — -•1 1=1(a), J = J ( a ) ,  P=P(a). (73)

Then , a one—dimensional search scheme is applied to (73—2),

and a value of the stepsize a is selected for which the fol—

- 

lowing relations are satisfied:

• .3 (a )  < J ( O )  , P(ct) < P~ , ~ 
(
~

) ~ 0 ’ (74)

where T is the final time and P~ is a preselected number , not

necessarily small. Satisfaction of m eg. (74—1) is possible

because of the descent property of the gradient phase. Ineq .

1. (74-2) is introduced to prevent excessive constraint

(• 

• j
L ~°Therefore, the constants kg and kr are given by Eqs . ( 5 3 ) .

C
_ _

~~~~
__

_ _ _•_ ••_ _ •____~~
__

~ 1__ • • r n_____..~~ • ~~~~~ - - • •~~~~ • •~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~
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violation. And m eg. (74—3) is required for problems with

free final time.

Prior to the satisfaction of (74), a scanning process is

employed , leading to the bracketing of the minimum point for

3 ( a ) .  This operation is then followed by a Hermit ian cubic

interpolation process (Ref .  3 4 ) ,  which is stopped whenever the

following relation is satisfied:11

3 ( a ) < or JJ (a)/J (O) < c 4, (75)

subject to an upper limit for the number of search steps 
~~~~~~~

Once a stepsize a0 has been selected consistently with either 
•

(75) or the prescribed upper limit for the number of search

steps, Ineqs.(74) must be checked . If satisfaction occurs ,

then the stepsize a~ is accepted . If any violation occurs , then

the stepsize 
~ 

must be bisected progressively until satisfac-

tion of (74) is finally achieved.

5.2. Remark. Alternatively, the search for the gradient

stepsize can be performed by replacing the augmented function-

al J with the augmented penalty functional W , defined by 
•

W = J + k P , ( 76 )

H 11
The symbols £3 and £4 denote small , preselected numbers.
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where k denotes the penalty constant , to be suitably chosen.

After substitution of Eqs. (22) into (76), the following

function of the stepsize is obtained :

(77)

L Then , the combination of scanning process/Hermitian cubic

interpolation process leading to satisfaction of (75) is re-

placed by a combination of scanning process/Hermitian cubic

interpolation leading to satisfaction of the following rela-

tion:’2

• 
• L

~~~~~ 
< or a()~

Wa (0) < C 6~ 
(78)

subject to an upper limit for the number of search steps N~~.

Once a stepsize ct0 
has been selected consistently with either

(78)  or the prescribed upper limit for the number of search

steps , Ineqs. (74)  must be checked . If sat isfact ion occurs ,

7 then the stepsize a~, is acceoted . If any violation occurs ,
3.

then the stepsize 
~~ 

must be bisected progressively until

• I satisfaction of (74) is finally achieved.

I

I ‘2The symbols E5 and t6 denote small , preselected numbers.

d l 
-- -

~~~~~~~~~~~~~~~~~~~~~

-

~~~~~~~~~~~~~~~~ 

_  _
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5.3. Restoration Stepsize. Suppose that the perturba-

tions A(t), B(t), C solving the LTP-BVP (45)—(52) for the

restoration phase13 are known. Since the nominal functions

x ( t ) , u ( t ) , it are known , the one-parameter family of varied

functions (22) can be formed . For this one—parameter family,

the constraint error (15) becomes a function of the form

P=P(a). (79)

Then , the stepsize a must be selected so that the following

relations are satisf ied :

P ( c x )  < P ( 0 ) ,  ~ (a )  > 0. (80)

Satisfaction of Ineq. (80—1) is possible because of the

descent property of the restoration phase. Ineq . (80—2) is

required for problems with free final time.

In order to achieve satisfaction of Ineqs . (80), a bisection

process is applied to the restoration stepsize a, starting

from the reference stepsize a0 1. This reference stepsize

has the property of yielding one-step restoration for the case

where the constraints (2)-(5) are linear.

13Therefore , the constants kg and kr are given by Eqs. ( 5 4 ) .

11 •~

I t

sJ
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La

5 .4 .  I terat ive Procedure for the Restoration Phase.

The descent property (71) of the restoration phase guarantees

satisfaction of Ineq . (80-1) at the end of any iteration, but

not satisfaction of Ineq . (19-1). Therefore, the restoration

- -  algorithm must be employed iteratively until m eg. (19-1) is

satisfied . At this point, the restoration phase is termina—

ted.

5.5. Descent Property of a Cycle. A descent property

• exists for a complete gradient-restoration cycle under the

assumption of small stepsizes. Let ag denote the gradient

stepsize and ar the restoration stepsize. Simple manipula—

tions, omitted for the sake of brevity , show that the gradient

corrections are of O(ag)i while the restoration corrections

are of O(ar~~
). Hence, for ag sufficiently small, the restor-

ation corrections are negligible with respect to the gradient

corrections. Therefore, the restoration pha se preserves the

descent property of the gradient phase.

More speci f ically , let I, I, ~ denote the values of the

I functional (1) at the beginning of the gradient phase, at the

end of the gradient phase, and at the end of the subsequent

I restoration phase. Note that I and I are not comparable,

I 
since the constraints are not satisfied to the same accuracy .

On the other hand, I and I are comparable , and the gradient

• I stepsize ag can be selected so that

~~(I. (81)
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This inequality constitutes the descent property of a complete

gradient—restoration cycle. In order to enforce it , one pro-

ceeds as follows . At the end of the restoration phase, one

must verify Ineq . (81). If it is satisfied , the next qradient

phase is started ; otherwise , the previous qr a d i c nt  ~ te 1)s I ~
‘
~~~‘

is bisected as many times as needed un ii I , ~ f t  e r re f ;  t or~ t Ion ,

Ineq . (81) is satisfied .

I •

_ _ _  _ _ _  

H
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6. Summary of the Algorithm

I This algorithm includes cycles composed of a gradient

phase and a restoration phase. The objective of each cycle

I is to decrease the functional I so that Ineq . (81) is satis-

fied, while the constraints are satisfied to a predetermined

accuracy (19-1).

6.1. Gradient Phase. This phase involves a single

iteration , and its objective is to decrease the augmented

• I functional J, while the constraints are satisfied to first

1 order. The gradient phase can be summarized as follows.

(a) Assume nominal functions x(t), u(t),it which satisfy

I the constraints (2)-(5) within the preselected accuracy (19-1).

(b) For the nominal functions , compute the vectors

I 
~~~~~

‘ 
f and the matrices 

~~~~~
‘ 

~~~~~
‘ 4~ and S~ , S , S~~~ along the

interval of integration. At the final point, compute the

vectors 
~~~ 

g and the matrices 
~~~~~

‘

I (c) Solve the LTP-BVP (45)-(52), with constants kg and

kr given by Eqs. ( 5 3 ) ,  using the method of part icular  solu-

I tions . In this way , obtain the functions A (t), B(t), C and

I the multipliers X(t) , p(t), p .

(d) Using the functions in (c), compute the gradient

I stepsize by a one-dimensional search on the augmented fun-

ctional 3(a) until satisfaction of Ineq. (7 5)  occurs. Then ,

U bisect the resulting stepsize a0 (if necessary), unt i l

I

________________ • 
— •

~
— • • • - • • •

~
— • • • • • • • • • • • -••—•• • • • •



r ~~

-

~~~~~~~~~~~~~~

-••-•
•.• •

~~~~~~

36 A A R — l 4 7

sa t i s fact ion of Ineqs. ( 7 4 )  occurs.

(e) Once the gradient stepsize is known , compute the

varied funct ions  ~c ( t ) ,  ü ( t ) ,  ii w i th  Eqs. ( 2 2 ) .

6.2. Restoration Phase. This phase involves one or

more i tera t ions, and i t s  object ive is to reduce the constraint

error I’, until satisfaction of (19—1) occurs. Within a single

iteration , the objective is to decrease the constraint error

to a level compatible with Ineq . (23-3), while the norm

squared of the variations of the control and the parameter

is minimized.

The nominal functions x(t), u(t) , n are chosen as fol—

lows: for the first restorative iteration , the nominal fun-

ctions are identical with the varied functions obtained at

the end of the previous gradient  i te ra t ion;  for any subsequent

restorative iteration , the nominal functions are identical

with the varied functions obtained at the end of the previous

restorative iteration. With this understanding , the resto—

ation phase can be summarized as follows .

(a) Assume nominal functions x(t), u(t), it which satisfy

condition (3), but violate at least one of conditions (2) and

(4)—(5)

(b)  For the nominal funct ions , compute the vectors

(~c - ~) , S and the matrices 
~~~ 

and S> , 
~~~ 

S,~ alonq the

interval of integration. At the final point , compute
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I

the vector ~ and the matrices 
~~~~~

‘ ~~
•

I (c) Solve the LTP-BVP (45)-(52), with constants kg and

1 
kr given by Eqs. (54), using the method of particular solu-

tions. In this way , obtain the functions A(t), B(t), C and

• 7~ 
the multipliers X (t), p(t), p

• (d) Using the functions in (c), compute the restoration

F stepsize by a one—dimensional search on the constraint error

• P(ct). To this effect, perform a bisection process on a,

starting from a0= 1, until Ineqs. (80) are satisfied .

• •y. (e) Once the restoration stepsize is known, compute the

varied functions *(t), ü(t), ~ with Eqs. (22).

I (f ) Verify whether the varied functions in (e) satisfy

Ineq. (19-1). If this is the case, the restoration phase is

I terminated. Otherwise, return to (a) and continue the pro-

I cess until satisfaction of (19-1) occurs.

6.3.  Gradient-Restoration Cycle. After the restoration

I phase is completed , verify whether m eg . (81) is satisfied.

If this is the case, start the next cycle of the sequential

I gradient-restoration algorithm. If not, return to the previous

I gradient phase and reduce the gradient stepsize (using a bisection

process) until , after restoration, Ineq. (81) is satisfied.

1 6.4. Computational Considerations. Here, special

conditions relevant to the computer implementation of the

I sequential gradient—restoration algorithm are presented .

‘ • I
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Starting Condition. The present algorithm can be

started with nominal functions x(t), u(t), it satisfying con-

• dition (3) and violating none, some , or all of conditions (2)

and (4)-(5). If the nominal functions are such that Ineq.

(19-1) is violated , the algorithm starts with a restoration

phase; hence, the first cycle is a half cycle , involving a

restoration phase only. On the other hand , if the nominal

functions are such that Ineq . (19—1) is satisfied , the algor-

ithm starts with a gradient phase ; hence , the first cycle is ..
a complete gradient—restoration cycle.

Bypassing Condition. At the end of the gradient phase

of any cycle, the constraint error P must be computed . If

• m eg. (19—1) is violated , a restoration phase is started .

Otherwise , the restoration phase is bypassed , and the next

gradient phase of the algorithm is started . 
•

Stopping Conditions. For the restoration phase taken -

individually,  convergence is achieved whenever Ineq . (19-1) is - I

satisfi ed. For the sequential gradient-restoration algorithm

taken as a whole , convergence is achieved whenever Ineqs.

(19—1) and (19-2) are satisfied simultaneously.
I.

• 4.

il
•

_
~~L~~~TII.iJ~~~~~~ I
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7. Experimental Conditions

I In order to evaluate the theory , several examples were

solved. The sequential gradient-restoration algori thms

1 associated with Problems P1 and P2 were programmed in

I FORTRAN IV, and the numerical results were obtained in double-

( precision arithmetic.

~ I 
Computations were performed at Rice University using an

IBM 370/155 computer. For each example, the interval of in-

J tegration was divided into 100 steps. The differential

• equations were integrated using Hamming ’ s modif ied predictor-

corrector method with a special Runge-Kutta start ing procedure •

I (Ref. 35). The definite integrals I, .3, P , Q were computed

using a modified Simpson ’s rule. The method of particular

I solutions (Ref. 7) was used to solve the linear , two-point

I 
boundary-value problems associated with both the gradient

phase and the restoration phase.

I 7.1. Convergence Conditions. The parameters C l~ 
£2,

14
£4 appearing in Ineqs. (19) and (75) were set at the levels

= E—08 , £2 = E—04 , £4 = E—03 . (82)

I H
I 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I 14me symbol E±ab stands for ~~~~~~

1
1

I
•
E ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —



________________________ -- • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

40 AAR—l47

The tolerance level (82-1) characterizes the r~storation

phase; the tolerance levels (82—1) and (82-2), employed in

combination , characterize the algorithm as a whole; and the

tolerance level (82-3) characterizes the one—dimensional . 

• 
-

search for the gradient stepsize.

7.2. Safeguards. For the gradient phase , the parameter

P~ appearing in Ineq. (74-2) was set at the level

P~~=10 . (83) t
The tolerance level (83) limits the constraint violation 

~
•

which is permissible during the gradient phase. Also for the

gradient phase, the number of Hermitian search steps required

to satisfy Ineq. (75) was subject to the upper bound • 

-

N5 < 5 .  (84) 
I.

7.3. Nonconvergence Conditions. The sequential

gradient-restoration algorithms were programmed to stop when- 
-

ever violation of any of the fol lowing inequalities occurred:15

U
15lnequality (87) is characteristic of the IBM 370/ 155 computer.

H

• ~~~~~~~~~~~~~~~~~ -— ~~~~~ 
_

~
_.• • ~~~~~~~~ . ~~~~~~~~~~~~~~~~ • • __________
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1
N
~~
<30 , N< lOO , Nr <lO

~ 
(85)

Nbg •~•
lO l “1br~~~

0’ NbC < S , (86) H

F M < 0.83 E+75. (87)

Here , N
~ 

is the number of cycles, N is the total number of

iterations , Nr is the number of restorative iterations per

• cycle, Nbg is the number of bisections of the gradient step—

size required to satisfy Ineqs. (74), Nbr is the number of

bisections of the restoration stepsize required to satisfy

• Ineqs. (80), Nbc is the number of bisections of the gradient

stepsize required to satisfy m eg. (81), and M is the modulus

of any of the quantities employed in the algorithm.

am

E
i

c

. 1

I I
- ~~~~~~~~~~ 

• - —--•  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - • r • - • . - ~~~~~~ _ -  • 

-

~~~~~~~~
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8. Numerical Examples, Problem P1

In this section , four numerical examples are described

employing scalar notation . In part icular, the symbols

x1( t ) ,  i = 1 , . . . ,n , denote the components of the state; the

symbols u.(t), i = l ,...,m, denote the components of the con-

trol; and the symbols it
t,  i = l ,...,p, denote the components

of the parameter.

For all of the examples, a time normalization is used in

order to simplify the numerical computations. Specifically,

the actual time 0 is replaced by the normalized time

(88)

which is defined in such a way that t = 0 at the initial point

and t = l  at the final point. The actual final time t , if it

is free , is regarded as a component of the vector parameter ~
to be optimized . In this way,  an optimal control problem with

variable final time is converted into an optimal control prob-

lem with fixed final time.

Concerning the convergence history , the terminology is

as follows : N
~ 
denotes the cycle number , Ng is the number of 

•

gradient iterations per cycle , Nr is the number of restorative

iterations per cycle , N is the total number of iterations , •

P is the constrain t error, Q is the error in the optimality
• 

cond itions , and I the value of the functional being minimize d.

~2- H

_ _ _  •• • • ••

•

•• ~••--• • • • • • • • •~ • • • • • ~Al
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Example 8.1. This example involves (i) a quadratic

functiona l, (ii) nonlinear d i f f e ren t i a l  equations , (i i i )

boundary conditions of the fixed endpoint type , and ( iv)

fixed final time T = 1:

ClL I=~~~(l+x~~+x~~+u~ )dt , (89)

.30

L 
= U

1 

— X
2 

= u1 
— x1x2 , (90) 

•

x1(0) = 0, x2(0) = 1 , (91)

- -  
x1(l) = 1, x2(1) = 2 . (92)

The assumed nominal functions are

x1(t) =t , x2(t) = l + t , u1(t) =1 . (93)

The numerical results are given in Tables 1-2. Convergence to
1~~~ the desired stopping condition occurs in N~ = 3 cycles and

- N = 7  iterations, which includ e 2 gradient iterations and 5
• - restorative iterations.

Example 8.2. This example involves (i) a nonquadratic

- 
functional, (ii) nonlinear differential equations , (iii)

I boundary conditions of the fixed endpoint type, and (iv) fixed

final time T=1 :

1:

_ _  - -  • 
- -3—

~~~~~~~~~
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(1
(—2cos u1)dt , (94)

0 : 1
= 2sin — 1 , = x1 , (95)

x1(0) = 0 , x2(0) = 0, (96)

x1(l) = 0 , x2 (l) = 0.3 . (97)

The assumed nominal functions are

• x1(t) = 0, x2 (t) = 0.3t, u1(t) = 0 . (98) •

The numerical results are given in Tables 3-4. Convergence

to the desired stopping condition occurs in = 6 cycles and

N= 13 iterations, which include 5 gradient iterations and 8

restorative iterations. 
- -

.

Example 8.3. This example is a minimum time problem and

involves (i) a linear functional , (ii) nonlinear differential

equations , ( iii)  boundary conditions of the fixed final state - . 

• -
•

type , and (iv) free f ina l  time T .  After setting it
1

= i t, the

problem is as follows:

(99) 
-

. 2 2x1 = n1u1 , x2 = 

~ l (u1 
— x1), (100)

-• ~• ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —~~~~~~ • -- — - .
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x1(0) = 0, x2(0) = 0, (101)

x1(l) =1 , x2 (l) =0. (102)

- The assumed nominal functions are
I I _ i

x 1( t )  = t , x 2 (t )  = 0 , u1( t) = 1 , it 1= l .  ( 103)

The numerical results are given in Tables 5-6. Convergence

- to the desired stopping condition occurs in N
~ 

= 3 cycles and

N = 7  iterations , which include 2 gradient iterations and 5

restorative iterations.

~- -  Example 8.4. This example is a minimum time problem and

involves ( i)  a linear funct ional , (ii) nonlinear differential

equations , (iii) components of the final state partly given

and partly free, and (iv) free final time T. After setting

111 = 1 1 the problem is as follows:

- 
I= it 1, (104)

L = ii1x3cos u1 , = ir
1x3sin U1 

, = 7T
1

5ifl u1 , ( 105)

. 1 x1(0) = 0, x2(0) = 0, x3(0) 0, (106)

I x (l)=1. (107)

IL: 
1
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The assumed nominal func tions are

x1(t)=t, x2(t)=0 , x3(t) =0 , u1(t)=l , it
1

= l  . (108) •

The numerical results are given in Tables 7-8. Convergence to

the desired stopping condition occurs in N
~ 

= 4 cycles and

N =  12 iterations, which include 3 gradient i terations and 9

restorative iterations.

n
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9. Numerical Examples, Problem P2

In this section, four numerical examples are described

employing scalar notation . The symbols used for Problem P2

are the same as those employed for Problem P1. The time

normalization (88) is employed.

Example 9.1. This example involves (i) a quadratic

functional , (ii) a nonlinear differential equation , (iii) a

state inequality constraint of the first order16, (iv) bound-

ary conditions of the fixed endpoint type, and (v) fixed final

time T 1 :

1

I = 

~~ 

(x~ + u~ )dt , (109)

2x1 = x
1 

— u1 , (110)

x1 — 0 . 9>  0 , (ill)

xi 
( 0 )  = 1 , (112)

x1 (1) = 1 . (113)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

means that the first time derivative of the left—hand
side of Ineq. (111) contains the control explicitly .

L I-
- I

- • • • • • •• •~~~~~~~~~~~~~~~~ • - •~~~~
• 

~~~~~~~~~~~~ •
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Upon introducing the auxiliary state variable x2 and the

auxil iary control variable u 2 defined by (Ref .  25)

• x1 - 0.9 = X
2 ‘

~2 
= u2 , (114)

we replace the inequality constrained problem (l09)-(1l3) with

the following equality constrained problem :

1= ~~~~~~~~~~~~~ (115)

(116)

x~ - u1 
- 2x2u2 = 0 , (117)

x1 ( 0 )  = 1 , x2 (0) = /(0.1) , (118)

x1(l) = 1 . (119)

The assumed nominal functions are

x1(t)=l , x2(t)=/ (0.l), u1(t)=l , u2(t)=1. (120)

The numerical results are given in Tables 9—10. Convergence

to the desired stopping condition occurs in N
~ 

= 5 cycles and

L N= 12 iterations, which include 4 gradient iterations and 8

restorative iterations.

•

~~~ ~~ I 

.--•--—.- •--•—- —~~ - • - -~~~~—- - - - - -~~ •-
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Example 9 . 2 .  This example involves (i) a quadratic

functional , ( i i )  linear d i f fe ren t ia l  equations , ( i i i)  a state
• 

inequality constraint of the second order17, (iv) boundary

conditions of the fixed endpoint type, and (v) fixed final

• time T 1 :  1
• 1= ~~~u~~dt , (121)

• 
— X

2 
= u1 , 

( 122)

0.15 — x1 > 0 , (123)

x1(0) = 0 , x2
( O )  = 1 , ( 124)

I

x1(l) = 0 , x2 (1) —l . (125)

Upon introducing the auxiliary state variables x3, x~ and the

auxiliary control variable u2 defined by (Ref. 25)

• 0.15 - x1 = X
3 

= X
4 ~ = u2 , (126)

I
17Thjs means that the second time derivative of the left-hand
side of Ineq. (123) contains the control explici tly, while

I this is not the case with the first time derivative. 
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we replace the inequality constrained problem (l2l)-(125) with

the following equality constrained problem :

(~1

I=~~ u~~dt , (127)
Jo

( 128)

u1+ 2 x 3u2 + 2 x ~~= 0 , (12 9)

x1(0)=0 , x2(0)=l , x3 (0)=/(0.15), x4(0) = —l//(0.60), (130)

x1(l) = 0, x2
(1) = — l  . (131)

The assumed nominal functions are

x1 (t) = 0, x2(t) = 1— 2t, x3 (t) = /(0.15) (1— 2t) , (132)

x 4 (t) = (2t — 1)// (0.60), u1(t) = 1 , u2 (t) = 0 . (133)

The numerical results are given in Tables 11-12. Convergence

to the desired stopping condition occurs in N
~~~ 

= 8 cycles and

N=l6 iterations, which include 7 gradient iterations and 9

restorative iterations.

Example 9.3. This example is a minimum time problem and

involves (i) a linear functional , ( i i)  nonlinear d i f f e r e n t i a l

equations , ( i i i)  a state-derivative inequali ty constraint , 
• •

. -  
•
~~~~

•
~~~~~ 

~~~~~~~~~~~~~~~~~~~
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L.  ( iv)  boundary conditions of the f ixed f ina l  state type , and (v)

free final time it . After setting it
1

= i t, the problem is as

follows:

- 
I=11 l~ 

(134)

2 2x1 =ir 1u1, x2 = it1(u1 — x 1 —0. 5) , (135)

+ 0.5> 0 , (136)

x1(O) =0 , x2 (0) =0 , (137)

£3 

x1(l) =1 , x2 (l) = — i t/ 4  . (138)

Upon introducing the auxil iary control variable u 2 def i ned by

• (Ref. 25)

(139)

we replace the inequality constrained problem ( 13 4 ) - ( 13 8)  with

the following equality constrained problem:

1 
I = i t1, (140)

I 
~ 1

= i t
1
u1, ~2 = it1(u~~— x ~~-0.5), (141)

I u~~-x~~-u~~= 0 , (142)

I x1 ( 0 )  = 0 , x2 ( 0 )  = 0 , (143)

__  J
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x1(l) = 1 , x2(l) = - it/4 . (144)

The assumed nominal functions are

x1(t)=t, x2(t)=—(ir/4)t, u1(t)=l, u2(t)=l , iti=1. (145)

The numerical results are given in Tables 13—14. Convergence

to the desired stopping condition occurs in N~~~~
6 cycles and

N= l4 iterations, which include 5 gradient iterations and 9

restorative iterations.

Example 9.4. This example involves (i) a quadratic

functional , (ii) linear differential equations, (iii) a control

• inequality constraint, (iv) boundary conditions of the fixed

endpoint type , and (v) fixed final time it :

1

I 5 (1 + x~ + x~ + u~ )dt , (146)

= u1 
— x2 , u1 

— 2x~ (147)

6— u 1 >0 , (148) H

x1(0) = 0 , x2 ( 0 )  = 1 , (149)

x1 ( 1) = 1 , x2 ( l )  = 2 . (150)

Upon introducing the auxil iary  control variable u 2 defined by
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• I•• 
— •

26 — u 1 — u 2 0 , (151)

we replace the inequality constrained problem (l46)-(150)

with the following equality constrained problem:

• I=~~~~(l+x ~~+x~~+u~ )dt , (152)

= ‘
~l 

— 
‘ 

= u1 
— 2x 1 , (153)

26 — u 1 — u 2 =0 , (154)

x1(0) = 0 , x2(0) = 1 , (155)

~ 
I-

3 

x1(1) = 1 , x2(1) = 2 . (156)

The assumed nominal functions are

r
x1 (t )  = 5t — 4t2 , x2(t) 1+ St — 4t2 , (157)

u1 (t) = 6(1 
— t) , u2 (t) = 2t. (158)

The numerical results are given in Tables 15—16. Convergence

I to the desired stopping condition occurs in N
~~= l l  cycles and

N=24 iterations, which include 10 gradient iterations and 14

restorative iterations.

_ _  ~~~~~~~~~~~~~~~~ _______  - -
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Table 1. Convergence history , Example 8.1.

Ng Nr N P Q I

0 0 0 0 0.72E+01
0 4 4 0.32E—lO 0.97E+00 33.67701

2 1 1 6 0.84E—13 0.50E—02 33.46606
3 1 0 7 0.5lE—09 0.4lE—04 33.46484

Table 2. Converged solution, Example 8.1.

• t xl x2 U
1

0.0 0.0000 1.0000 —8.3428
0.1 —0.7862 0.2778 —6.3676
0.2 —1.3011 —0.2366 —3 .8632
0.3 —1 .5837 —0.5625 —1.4845
0.4 —1.6735 —0.7169 0.4682
0.5 —1.6003 —0.7107 1.9931 

•
• 1

0.6 —1.3780 —0.5437 3.2522
0.7 — 1.0080 —0.2055 4.4920
0.8 —0.4877 0.3179 6.0526 fl
0.9 0.1807 1.0416 8.4996
1.0 1.0000 2.0000 13.0496

r = l . 0 0 0 0 0

ti
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a .

Li .Table 3. Convergence history , Example 8 .2 .

a N
~ 

Ng Nr N P Q I

0 0 0 0 0.1OE+Ol
1 0 4 4 0.l7E—08 0.67E+00 —1.11665
2 1 2 7 0 .l7E—l 1 0 . 3 4 E — O l  — 1.16519

La 3 1 1 9 0.llE—lO 0.30E—02 —1.16923
• 4 1 1 11 0.58E—l5 O.64E—03 —1.16950

- - 5 1 0 12 0.20E—08 0.l8E—03 —1.16961
6 1 0 13 0.36E—08 0 . 50E — 04  —1.16964

I ~~ 

• 

-

Table 4. Converged solution , Example 8 . 2 .

r
S. t xl x 2

0.0 0.0000 0.0000 1.3333

L 
0.1 0.0937 0 .0047  1.3049

- 0.2  0.1856 0.0 186 1.2609
0.3 0 .2742  0.0417 1.2005
0.4 0.3575 0.0733 1.1131

I 0.5 0.4309 0.1128 0.9784
0.6 0 .4842  0.1589 0.7517
0.7 0.4921 0 .2082 0.3661

L 0.8 0.4141 0.2544 —0.1521
0.9 0.2381 0.2877 — 0 . 6 0 8 7
1.0 0.0000 0.3000 — 0 . 8 9 5 9

I
T l .00000

I
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Table 5. Convergenge history , Example 8 .3 .

N N N N P Q Ic g r

0 0 0 0 0.53E+00
0 4 4 0.74E—l6 0.53E—Ol 1.58101

2 1 1 6 0.33E—08 0.13E—03 1.57080
3 1 0 7 0.28E—08 0.16E—05 1.57075

Table 6. Converged solution , Example 8.3.

t xl x2 U
1

0.0 0.0000 0.0000 0.9997
0.1 0.1564 0.1544 0.9874
0.2 0.3089 0.2937 0.9508
0.3 0.4538 0.4043 0.8907
0.4 0.5876 0.4752 0.8087
0.5 0.7069 0.4997 0.7067
0.6 0.8087 0.4752 0.5875
0.7 0.8907 0.4042 0.4538
0.8 0.9507 0.2937 0.3092
0.9 0.9874 0.1544 0.1572
1.0 1.0000 0.0000 0.0017 •

t = ii 1 =l.57075

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~ -_ -— •~ -• ••- • • •—- — • _- - — - ••
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Table 7. Convergence history , Example 8 .4 .

N N N N P Q Ic g r

• V
I.

0 0 0 0 0.l7E+0l
- —  1 0 5 5 0.44E — 16 0.25E+00 1.83370

2 1 2 8 0 .29E— 0 9  0 .42E—0 l  1.78266 •
3 1 1 10 0.39E—09 0.62E—03 1.77262

- 4 1 1 12 0.1OE—16 0.92E—05 1.77245

I •

Table 8. Converged solution, Example 8.4.

• :: t x1 x2 x3 u1

0.0 0.0000 0.0000 0.0000 1.5708
0.1 0.0016 0.0155 0.1765 1.4133
0.2 0.0129 0.0607 0.3486 1.2558
0.3 0.0425 0.1311 0.5121 1.0984
0.4 0.0974 0.2198 0.6630 0.9412
0.5 0.1819 0.3180 0.7975 0.7841

• 0.6 0.2976 0.4161 0.9123 0.6270
0.7 0.4428 0.5046 1.0046 0.4699

L 

0.8 0.6132 0.5748 1.0722 0.3126
0.9 0.8018 0.6196 1.1132 0.1549
1.0 1.0000 0.6346 1.1266 —0.0033

k i
t = T r i = l . 7 7 2 4 5

1

_ _  • • - • - _ _  -—---- -•- s
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Table 9. Convergence history , Example 9.1.

N
~ 

Ng Nr N P Q I

0 0 0 0 0.14E+01
1 0 3 3 0.52E—09 0.35E+00 1.83569
2 1 2 6 0.15E—16 0.l4E—01 1.66599
3 1 1 8 0.1OE—09 0.24E—03 1.65742
4 1 1 10 0.60E—17 0.1SE—03 1.65697
5 1 1 12 0.96E—l8 0.98E—04 1.65678

Table 10. Converged solution , Example 9.1.

t

• 0.0 1.0000 0.3162 1.7482 -1.1831
0.1 0.9410 0.2025 1.3353 —1.1104

• 0.2 0.9095 0.0978 1.0097 —0.9324
0.3 0.9006 0.0246 0.8366 —0.5177
0.4 0.9000 —0.0090 0.8067 —0 .1865
0.5 0.9003 —0.0177 0.8104 —0 .0018
0.6 0.9000 —0.0094 0.8135 0.1816 

• -

0.7 0.9005 0.0238 0.7864 0.5158
0.8 0.9094 0.0972 0.6442 0.9398
0.9 0.9409 0.2024 0.4360 1.1097
1.0 1.0000 0.3162 0.2470 1.1904

t 1.00000

• 
_ _ _ _ _  

Hi
-~~~~~~~~ 3-•••.~4 •  
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Table 11. Convergence history , Example 9.2.

N
~~ 

N
g 

Nr N P Q I

0 0 0 0 0.22E+02
1 0 5 5 0.44E—13 0.11E+00 6.03009
2 1 1 7 0.15E—14 0.79E—02 5.93793
3 1 1 9 0.28E—17 0.20E—02 5.93016

• r 4 1 1 11 0.l2E—18 0.74E—03 5.92817
• 5 1 1 13 0.l5E—20 0.37E—03 5.92738 • -
3. 

6 1 0 14 0.86E—08 0.20E—03 5.92687
-_  7 1 0 15 0.62E—08 0.12E—03 5.92661

8 1 0 16 0.74E—08 0.52E—04 5.92650

£

I
Table 12. Converged solution , Example 9.2.

t x1 x2 x3 x4 u1 u2

I 0.0 0.0000 1.0000 0.3872 —1.2909 —4.4535 1.4461
0.1 0.0793 0.6045 0.2657 —1.1375 —3.4592 1.6392
0.2 0.1242 0.3078 0.1606 —0.9583 —2.4746 1.9862

I 0.3 0.1442 0.1105 0.0756 —0 .7301 —1.4669 2.6475
0.4 0.1496 0.0145 0.0175 —0.4152 —0.4730 3.6484
0.5 0.1499 —0.0001 —0.0045 —0.0174 0.0375 4.1943
0.6 0.1497 —0.0118 0.0147 0.4010 —0.4405 4.0278

I 0.7 0.1446 —0.1097 0.0733 0.7483 —1.5262 2.7693
0.8 0.1244 —0.3098 0.1599 0.9688 —2.4681 1.8476
0.9 0.0794 —0 .6057 0.2655 1.1403 —3.4508 1.6007
1.0 0.0000 —1.0000 0.3872 1.2909 —4.4354 1.4228

I r=l .00000

4 ’

____ .TT_ 11T. _ _
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Table 13. Convergence history , Example 9.3.

N
~ 

Ng Nr N P Q I

0 0 0 0 0.llE+Ol
1 0 5 5 0.22E—14 0.2lE—Ol 1.82848
2 1 2 8 0.47E—l5 0.20E—02 1.82290
3 1 1 10 0.83E—l2 O.55E—03 1.82245
4 1 1 12 0.l8E—13 0.22E—03 1.82234
5 1 0 13 0.60E—08 0.1OE—03 1.82224
6 1 0 14 0.77E—08 0.39E—04 1.82222

Table 14. Converged solution , Example 9.3.

t xl x2 U
1 

U
2

0.0 0.0000 0.0000 0.4999 0.4999
0.1 0.0905 —0 .0465 0.4916 0.4832
0.2 0.1781 —0.0989 0.4670 0.4317
0.3 0.2598 —0.1623 0.4271 0.3389
0.4 0.3331 —0.2401 0.3768 0.1762
0.5 0.4020 —0.3298 0.4020 0.0092
0.6 0.4824 —0.4209 0.4824 0.0000
0.7 0.5788 —0.5120 0.5788 0.0001
0.8 0.6945 —0.6031 0.6945 0.0000
0.9 0.8334 —0.6942 0.8333 —0.0007
1.0 1.0000 —0.7853 0.9996 0.0008

T = T r 1 1.82222

- -,.L a.aa ~~~ — --
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- Table 15. Convergence history , Example 9.4.

N N N N P Q I
C g r

0 0 0 0 0.38E+01
1 0 4 4 O. 18E—12 0 .36E +00 2 0 . 2 7 4 2 2

• 2 1 2 7 O.36E—lO 0.37E— 0l 20.19329

3 1 1 9 0.79E—l0 0.96E—02 20.18932

- 
4 1 1 11 0.12E—ll 0 .49E—02 20.18813

5 1 1 13 0.32E—13 0.20E—02 20.18760
6 1 1 15 0.34E—14 0.l2E—02 20.18733
7 1 1 17 0.20E—15 O .63E—03 20.18718

- 8 1 1 19 0.96E—16 0 .50E—03 20.18707

9 1 1 21 0.45E—17 0.24E—03 20.18700
10 1 1 23 0.l6E—l6 0.34E—03 20.18693
11 1 0 24 0.29E—08 0.71E—04 20.18688

• Table 16. Converged solution , Example 9.4.

t xl x2 U
1 

U
2

0.0 0.0000 1.0000 6.0000 0.0000
3 0.1 0.4716 1.5519 6.0000 0.0000

0.2 0.8742 1.9967 5.3504 0.8059
0.3 1.1410 2.2746 4.3155 1.2978

• 0.4 1.2930 2.4172 3.4641 1.5924
0.5 1.3586 2.4610 2.7629 1.7991
0.6 1.3598 2.4346 2.1838 1.9535

f r 0.7 1.3133 2.3603 1.7031 2.0728
0.8 1.2320 2.2549 1.3012 2.1676
0.9 1.1253 2.1315 0.9618 2.2445

• • 1.0 1.0000 2.0000 0.6710 2.3084

I —

1 it=l.00000

[ 1
II

4
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10. Discussion and Conclusions

In this paper , two members of the family of sequential

gradient-restoration algorithms for the solution of optimal

control problems are presented . These algorithms are of the

ordinary-gradient type. One is associated with the solution

of Problem P1, Eqs. (l)—(4), and the other is associated with

the solution of Problem P2, Eqs. (1)- (5).

Problem P1 consists of minimizing a functional I which

depends on the n—vector state x(t) , the rn-vector control u(t),

and the p—vector parameter ii. The state is given at the ini-

tial point. At the final point , the state and the parameter

are required to satisfy q scalar relations. Along the inteval

of integration , the state , the control , and the parameter are

required to satisfy n scalar differential equations. Problem

P2 differs from Problem P1 in that the state , the control ,

and the parameter are required to satisfy k additional scalar

relations along the interval of integration .

The importance of Problems P1 and P2 lies in the fact

that a large number of problems of optimal control are covered

by these formulations (Refs. 7—34). In particular , Problem

P2 enlarges dramatically the number and variety of problems

of optimal control which can be treated by gradient—restoration

algorithms. Indeed , by suitable transformations , almost every

known problem of optimal control can be brought into the

• ~~~~~~~
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scheme of Problem P2. This statement applies , for instance ,

• I to the following situations: (i) problems with controi

equality constraints , (ii) problems with state equality con-

I straints, (iii) problems with state-derivative equality con-

1 
straints, (iv) problems with control inequality constraints ,

• (v) problems with state inequality constraints , and (vi) prob-

lems with state-derivative inequality constraints. For an

illustration of the scope and range of applicability of

Problem P2, the reader is referred to Ref. 19 and Refs. 23-29.

• The algorithms presented here include a sequence of two-

phase cycles , composed of a gradient phase and a restoration

J phase. The gradient phase involves one iteration and is de-

signed to decrease the value of the functional I, while the

I constraints are satisfied to first order. The restoration

phase involves one or more iterations and is designed to force

constraint satisfaction to a predetermined accuracy, while

1 the norm squared of the variations of the control and the

¶ parameter is minimized , subject to the linearized constraints.

• The principal property of the algorithms is that they

produce a sequence of suboptimal solutions , each satisfying

the constraints to the same predetermined accuracy. Therefore ,

• 
I 

the values of the functional I corresponding to any two ele-

ments of the sequence are comparable .

I The gradient phase is characterized by a descent property

I
~

- • • A~~~~~ ~~~~~~p a ~~~~~~~~~~~~~~~ -~~~~ ~~~~ ~~~~~~~~~~~
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on the augmented functional J, which implies a descent pro-

• perty on the functional I. The restoration phase is charac-

terized by a descent property on the constraint error P. The

gradient stepsize and the restoration stepsize are chosen

such that the restoration phase preserves the descent property

of the gradient phase. Hence, the value of the functional I

at the end of any complete gradient-restoration cycle is

smaller than the value of the same functional at the beginning

of that cycle.

Eight numerical examples are presented to illustrate

the performance of the algorithms associated with Problem P1

and Problem P2. The numerical results show the feasibility

as well as the convergence characteristics of these algorithms.

I •
•

___

- - —•-• ——• • 1
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